
Apache Karaf Cave 4.x - Documentation
Apache Software Foundation

Apache Karaf Cave 4.x - Documentation

Overview
User Guide

1. Installation
1.1. Pre-installation requirements
1.2. Registration of the Apache Karaf Cave features
1.3. Starting Apache Karaf Cave Server

2. Repository
2.1. Create
2.2. List

3. Populate repository
3.1. Upload a single artifact
3.2. Populate from an external repository

4. Proxy repository
5. HTTP wrapper service

5.1. Repository metadata access
6. Maven wrapper service
7. Administration

7.1. JMX
7.2. REST

Overview
Apache Karaf Cave is an Apache Karaf sub-project.

Cave is an implementation of the OSGi Repository specification, providing additional features
such as a complete Maven repository support, a REST API for management, support of remote
repository proxy.

Cave deals with the requirements and capabilities of all artifacts.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Apache Karaf Cave provides the following features:

• Storage: Cave includes a storage backend. The default one is a simple filesystem backend. As
the Cave backend is designed in a plugin way, you can implement your own backend (for
instance, JDBC or LDAP backend).

• Repository Metadata Generation: Cave creates the repository metadata for you, using the
artifacts presents in the repository storage.

• Maven support: Cave repositories act as a complete Maven repository, allowing you to use
Cave directly with Maven.

• REST API: Cave provides a REST API to manipulate the repositories.

• Artifact Upload: Users can upload OSGi bundle in a Cave repository. It supports URLs like
mvn:groupId/artifactId/version, file:, http:, etc.

• Repository proxy: Cave is able to proxy an existing repository, for instance an existing Maven
repository. The artifacts are located on the "external" repository, Cave handles the repository
metadata. Cave supports file: and http: URLs, it means that Cave is able to browse a remote
HTTP Maven repository for instance.

• Repository population: Cave is able to get artifacts present on an "external" repository (local
file: or remote http:), looking for OSGi bundles, and copy the artifacts in the Cave repository
storage.

Karaf Cave provides two components:

• the cave-server is the full OSGi repository service, including the storage, the management
layer, the REST service layer, etc.

• the cave-client is a local repository service proxy that use a remote Cave server (not yet
available).

User Guide

1. Installation
This chapter describes how to install Apache Karaf Cave into an existing Apache Karaf instance.

1.1. Pre-installation requirements
As Apache Karaf Cave is a Apache Karaf sub-project, it has to be installed into a running Apache
Karaf instance.

Apache Karaf Cave is available as Apache Karaf features. The easiest way to install is just to have
an internet connection from the Apache Karaf running instance.

Apache Karaf Cave 4.0.x is designed to work on Apache Karaf 4.0.x.

1.2. Registration of the Apache Karaf Cave features
Simply register the Apache Karaf Cave features URL in your Apache Karaf instance:

Now Apache Karaf Cave features are available, ready to be installed:

1.3. Starting Apache Karaf Cave Server
The Apache Karaf Cave Server is installed by the cave-server feature:

The cave-server feature is a meta-feature which actually installs:

• cave-storage feature providing the Cave filesystem default storage.

karaf@root()> feature:repo-add cave 4.0.0
Adding feature url mvn:org.apache.karaf.cave/apache-karaf-cave/4.0.0/xml/features

karaf@root()> feature:list|grep -i cave
cave-server | 4.0.0 | | Uninstalled |
karaf-cave-4.0.0 |
cave-storage | 4.0.0 | | Uninstalled |
karaf-cave-4.0.0 |
cave-http | 4.0.0 | | Uninstalled |
karaf-cave-4.0.0 |
cave-rest | 4.0.0 | | Uninstalled |
karaf-cave-4.0.0 |
cave-maven | 4.0.0 | | Uninstalled |
karaf-cave-4.0.0 |

karaf@root()> feature:install cave-server

• cave-http feature providing the Cave HTTP service allowing a remote access to the
repositories.

• cave-rest feature providing the Cave REST API allowing to manipulate the repository remotely
with any REST HTTP client.

• cave-maven feature providing a complete Maven repository for the Cave repositories.

After the installation of the cave-server feature, new commands are available:

2. Repository
A Cave repository is a container for:

• Artifacts (files)

• Repository metadata

By default, a repository uses a filesystem backend for the storage, the directory used is
KARAF_BASE/cave.

You can change the storage location in the etc/org.apache.karaf.cave.server.storage.cfg
configuration file:

karaf@root()> cave:<TAB>
cave:repositories cave:repository-create cave:repository-destroy
cave:repository-install cave:repository-populate cave:repository-proxy
cave:repository-uninstall cave:repository-update cave:repository-upload

For instance, you can define /var/cave/store for the storage.location property.

2.1. Create
The cave:repository-create command creates a new repository:

A repository is identified by a name, my-repository in our example.

Apache Karaf Cave creates the repository storage for you.

If you want to use an existing directory, and avoid Cave to create one in the storage location, you
can use the -l (--location) option:

By default, Apache Karaf Cave scans the repository storage and create the repository metadata.
You can use the -no (--no-generate) option to avoid this step:

##
#
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
##

#
Storage location where Apache Karaf Cave create repositories by default
#
cave.storage.location=cave

karaf@root()> cave:repository-create my-repository

karaf@root()> cave:repository-create -l /home/user/.m2/repository m2

By default, Apache Karaf Cave registers (installs) a new repository into the repository service. You
can use the -ns (--no-start) option to avoid this step:

NB: the -no and -ni options are interesting when you use an existing location for the
repository. If you create a new empty repository, these options don’t have really any effect.

2.2. List
You can list the repositories:

3. Populate repository
You can add new artifacts in a repository.

3.1. Upload a single artifact
You can upload a single artifact into a Cave Repository:

You can also use Maven style URL:

karaf@root()> cave:repository-create -no -l /home/user/.m2/repository m2

karaf@root()> cave:repository-create -ns -l /home/user/m2/repository m2

karaf@root()> cave:repositories
Name | Location
--
my-repository | /opt/apache-karaf-4.0.0/data/cave/my-repository

karaf@root()> cave:repository-upload my-repository file:/home/user/.m2/repository/org/
apache/servicemix/bundles/org.apache.servicemix.bundles.asm/3.3_2/
org.apache.servicemix.bundles.asm-3.3_2.jar
karaf@root()> cave:repository-upload my-repository http://svn.apache.org/repos/asf/
servicemix/m2-repo/org/apache/qpid/qpid-broker/0.8.0/qpid-broker-0.8.0.jar

karaf@root()> cave:repository-upload my-repository mvn:org.apache.servicemix.bundles/
org.apache.servicemix.bundles.ant/1.7.0_5

3.2. Populate from an external repository
You can also make a kind of "bulk" population of your repository, using an external repository:

Apache Karaf Cave supports file: but also http: URL. It means that Apache Karaf Cave is able
to browse a remote repository and copy the artifacts in your "local" repository.

For instance, you can populate your repository using all Ant ServiceMix bundles present on the
Central Maven repository:

You can also populate with the whole Central Maven Repository:

Maven Central repository is really huge and populating from the whole Maven Central
Repository will take very very long time. It’s just for demonstration purpose.

You can filter the artifacts that you want to pick up to populate the repository. The
cave:repository-populate command accepts a regex option for the filter. For instance, to pick
up only joda-time version 2 artifact, you can run:

4. Proxy repository
As you can populate repository, you can also proxy an "external" repository.

It means that the artifacts stay on the remote repository, Apache Karaf Cave generates the
repository metadata in the local repository for the remote artifacts:

karaf@root()> cave:repository-populate my-repository file:/home/user/.m2/repository

karaf@root()> cave:repository-populate my-repository http://repo1.maven.org/maven2/org/
apache/servicemix/bundles/org.apache.servicemix.bundles.ant/

karaf@root()> cave:repository-populate my-repository http://repo1.maven.org/maven2

karaf@root()> cave:repository-populate --filter .*joda-time-2.* my-repository
http://repo2.maven.org/maven2/joda-time/joda-time

NB: the Cave repository will only handle the repository metadata, it doesn’t monitor the remote
repository. It means that you have to call the cave:proxy-repository command each time the
remote repository change (new artifacts, etc).

NB: a best practice is to create a Cave repository dedicated for each proxied repository.

The cave:repository-proxy command accepts the filter option, as the cave:repository-

populate command:

5. HTTP wrapper service
When you install the Apache Karaf Cave Server, it starts a HTTP service wrapper.

It means that all artifacts and repository metadata presents in local repositories are exposed over
HTTP.

5.1. Repository metadata access
Assuming that you have the following repositories:

You can access the repository metadata using the following URL in your favorite browser:

NB: the port 8181 is the default one of the Apache Karaf HTTP service.

You can see that the URL follows the format:

karaf@root()> cave:repository-proxy my-repository http://repo1.maven.org/maven2/org/
apache/servicemix/bundles/org.apache.servicemix.bundles.commons-lang/

karaf@root()> cave:repository-proxy --filter .*joda-time-2.* my-repository
http://repo2.maven.org/maven2/joda-time/joda-time

karaf@root()> cave:repositories
Name | Location

my-repository | /opt/apache-karaf-4.0.0/data/cave/my-repository

http://localhost:8181/cave/http/my-repository-repository.xml

It means that you can register the repositories on remote Apache Karaf instances.

6. Maven wrapper service
When you install the Apache Karaf Cave Server, it starts a Maven service wrapper.

It means that all artifacts are available using a Maven structure (groupId/artifactId/version/
artifactId-version[-classifier].type).

It allows you to use your Cave repository directly using mvn URL in Karaf, and using Maven
itself: Cave acts as a complete Maven repository.

For instance, we have the following Cave repository:

You can access the corresponding Maven repository using:

NB: the port 8181 is the default one of the Apache Karaf HTTP service.

You can see that the URL follows the format:

For instance, if a Cave repository contains the commons-lang 2.6 artifact, it’s accessible using:

http://[cave_server_hostname]:[http_service_port]/cave/
http/[cave_repository_name]-repository.xml

karaf@root()> cave:repositories
Name | Location
--
my-repository | /opt/apache-karaf-4.0.0/data/cave/my-repository

http://localhost:8181/cave/maven

http://[cave_server_hostname]:[http_service_port]/cave/maven/

http://localhost:8181/cave/maven/commons-lang/commons-lang/2.6/commons-lang-2.6.jar

7. Administration

7.1. JMX
When you install Apache Karaf Cave server, it provides a CaveServerMBean.

This MBean uses the following object name:

Thanks to this MBean, using any JMX client (like jconsole for instance), you can do all actions as
you can using the cave:* commands:

• void createRepository(String name, String location, boolean generate, boolean install) throws
Exception;

• void destroyRepository(String name) throws Exception;

• void installRepository(String name) throws Exception;

• void uninstallRepository(String name) throws Exception;

• void populateRepository(String name, String url, boolean generate, String filter) throws
Exception;

• void proxyRepository(String name, String url, boolean generate, String filter) throws
Exception;

• void updateRepository(String name) throws Exception;

• void uploadArtifact(String repository, String artifactUrl, boolean generate) throws Exception;

7.2. REST
Cave provides a complete REST API to manipulate the repositories.

The API is available on:

NB: 8181 is the default port of the Apache Karaf HTTP service.

You can get the WADL:

org.apache.karaf.cave:type=repository,name=*

http://localhost:8181/cave/rest

http://localhost:8181/cave/rest?_wadl

Last updated 2015-08-03 11:25:24 CEST

	Apache Karaf Cave 4.x - Documentation
	Overview
	User Guide
	1. Installation
	1.1. Pre-installation requirements
	1.2. Registration of the Apache Karaf Cave features
	1.3. Starting Apache Karaf Cave Server

	2. Repository
	2.1. Create
	2.2. List

	3. Populate repository
	3.1. Upload a single artifact
	3.2. Populate from an external repository

	4. Proxy repository
	5. HTTP wrapper service
	5.1. Repository metadata access

	6. Maven wrapper service
	7. Administration
	7.1. JMX
	7.2. REST

