PowerIterationClustering
spark.powerIterationClustering.RdA scalable graph clustering algorithm. Users can call spark.assignClusters to
return a cluster assignment for each input vertex.
Run the PIC algorithm and returns a cluster assignment for each input vertex.
Usage
spark.assignClusters(data, ...)
# S4 method for class 'SparkDataFrame'
spark.assignClusters(
  data,
  k = 2L,
  initMode = c("random", "degree"),
  maxIter = 20L,
  sourceCol = "src",
  destinationCol = "dst",
  weightCol = NULL
)Arguments
- data
- a SparkDataFrame. 
- ...
- additional argument(s) passed to the method. 
- k
- the number of clusters to create. 
- initMode
- the initialization algorithm; "random" or "degree" 
- maxIter
- the maximum number of iterations. 
- sourceCol
- the name of the input column for source vertex IDs. 
- destinationCol
- the name of the input column for destination vertex IDs 
- weightCol
- weight column name. If this is not set or - NULL, we treat all instance weights as 1.0.